发电机电压调节器的工作原理
交流发电机三相绕组产生的相电动势有效值为Eφ==CeФn(V) 即交流发电机所产生的感应电动势与转子转速和磁极磁通成正比。
当转速n升高时,Eφ增大,发电机输出端电压UB升高,当转速升高到一定值时,输出端电压达到限定值,要想使发电机的输出电压UB不再随转速的升高而上升,只能通过减小磁通Ф来实现。又因磁极磁通Ф与励磁电流If成正比,所以减小磁通Ф也就是减小励磁电流If。
所以,交流发电机电压调节器的调压原理是:当发电机转速升高时,调节器通过减小发电机励磁电流If来减小磁通Ф,使发电机的输出电压UB保持不变;当发电机的转速降低时,调节器通过增大发电机的励磁电流If来增加磁通Ф,使发电机的输出电压UB保持不变 。
外搭铁型电压调节器工作原理
(1)基本电路
(2)工作原理
① 点火开关SW刚接通时,发动机不转。发电机不发电,蓄电池电压加在分压器R1、R2上,此时因UR1较低不能使稳压管VS的反向击穿,VT1截止,VT1截止使得VT2导通,发电机磁场电路接通,此时由蓄电池供给磁场电流。随着发动机的起动,发电机转速升高,发电机他励发电,电压上升。
② 当发电机电压升高到大于蓄电池电压时,发电机自励发电并开始对外蓄电池充电,如果此时发电机输出电压UB调节器调节电压的上限UB2,VT1继续截止,VT2继续导通,但此时的磁场电流由发电机供给,发电机电压随转速升高迅速升高。
③ 当发电机电压升高到等于调节电压上限UB2时,调节器对电压的调节开始。此时VS导通,VT1导通,VT2截止,发电机磁场电路被切断,由于磁场被断路,磁通下降,发电机输出电压下降。
④ 当发电机电压下降到等于调节下限UB1时,VS截止,VT1截止,VT2重新导通,磁场电路重新被接通,发电机电压上升。
周而复始,发电机输出电压UB被控制在一定范围内。
内搭铁型电压调节器工作原理
如图3-35所示,内搭铁型电子调节器基本电路的特点是晶体管VT1、VT2采用PNP型,发电机的励磁绕组连接在VT2的集电极和搭铁端之间,与外搭铁型电路显著不同。电路工作原理和结构与外搭铁型电子调节器类似。
(2)工作特性
从电子调节器的工作特性曲线可以看出,n1为调节器开始工作转速,称为工作下限,随着发电机转速的升高,磁场电流减小。当发电机转速很高时,由于大功率三极管可不导通,磁场电流被切断,发电机仅靠剩磁发电,所以,电子调节器的工作转速上限很高,调节范围很大。
集成电路电压调节器
集成电路也叫IC电路。是将二极管、三极管、电阻电容等电子元件集成在一块硅基片上,制成一个独立的电子芯片。集成电路调节器,在很多方面优于晶体管式调节器。比如体积更小,可将其安装在发电机内部,减少了外部线路,缩小了整个充电系统的体积。同时更加泼辣耐用。所以目前已被广泛的应用。
IC电压调节器在工作原理与晶体管调节器工作原理完全相同。都是根据发电机得电压信号,利用三极管的开关特性控制磁场电流来调节发电机的输出电压。集成电路调节器同样也有内、外搭铁之分,而且以外搭铁形式居多。
根据IC调节器分压电路检测的电压归属的不同,可分为发电机端电压检测法和蓄电池端电压检测法。
1)发电机电压检测法
发电机电压检测电路见图3-37b所示,分压器R1、R2从发电机输出端(D+端)得到电压,稳压管VS上的电压与发电机的输出电压成正比,所以该电路称为发电机电压检测电路(检测点在发电机上)。
发电机电压检测电路的优点:发电机到检测电路距离近,可不用导线连接,直接接在发电机输出端,连接可靠,不致使检测电路检测不到信号。发电机电压检测电路的缺点:当发电机到蓄电池之间连接电阻大时,蓄电池充电电压会偏低,使蓄电池充电不足。
2)蓄电池电压检测法
蓄电池电压检测电路如图3-37a所示,分压器R1、R2从蓄电池输出端得到电压,稳压管VS上的电压和蓄电池端电压成正比,所以该电路称为蓄电池电压检测电路(检测点在蓄电池上)。蓄电池电压检测电路优点:直接检测蓄电池端电压来控制发电机的输出,可使蓄电池的充电电压有保证。蓄电池电压检测电路的缺点:当蓄电池和发电机之间的连接不可靠时,会使发电机失控。
(2)集成电路调节器应用举例
夏利汽车调节器电路连接图如图3-39所示。
②充电指示灯:充电指示灯串接在VT1集电极上,VT1导通充电指示灯亮,VT1截止充电指示灯熄灭。在集成片IC中有控制VT1导通和截止的电路,控制信号由p点提供,p点提供的是发电机单相电压的交流信号,其信号幅值大小可反映发电机输出电压高低。
当发电机输出电压低于蓄电池电压时,IC中控制电路使VT1导通,充电指示灯亮,当发电机输出电压高于蓄电池电压时,IC中控制电路使VT1截止,充电指示熄灭。